You are here

Biochemistry

To explain a person's actions in the present, it sometimes helps to understand their past, including where they come from and how they were raised. This is also true of tumors. Delving into a tumor's cellular lineage, a Ludwig Cancer Research study shows, can reveal weaknesses to target for customized therapies.

The findings, detailed in the April 24 issue of the journal Nature, also illustrate how knowledge of the biochemistry and microenvironment of the tissue from which a tumor arises can help predict the genetic alterations its cancer cells are likely to undergo.

Researchers at the University of Virginia School of Medicine have made a discovery about human papillomavirus (HPV) that could lead to new treatments for cervical cancer and other cancers caused by the virus.

 

Anindya Dutta, PhD, MBBS, and his colleagues have made a discovery about HPV that could lead to new treatments for cervical cancer and other cancers caused by the common virus.

Yale Cancer Center (YCC) scientists have filled in a key gap in understanding the unusual route by which the Human papillomavirus (HPV) infects cells. Their findings, published online today in the journal Cell, may eventually help to broaden the scope of defenses against HPV and provide valuable clues for delivering drugs into cells.

HPV is a family of killers. Although there are effective vaccines against these viruses, they still cause about 5% of cancer deaths worldwide, including more than 250,000 women who die of cervical cancer each year.

Cells can avoid "data breaches" when letting signaling proteins into their nuclei thanks to a quirky biophysical mechanism involving a blur of spaghetti-like proteins, researchers from the Rockefeller University and the Albert Einstein College of Medicine have shown. Their study appears in the March 23 issue of theJournal of Biological Chemistry.

A Phase I clinical trial testing the safety of vaccines that might have the potential to prevent HIV infection will begin this month at four sites in the United States, marking the latest step in a three-decade quest at UMass Medical School to harness the power of DNA vaccines in addressing a major global health threat. The study, which is the result of research by Shan Lu, MD, PhD, professor of medicine and biochemistry & molecular pharmacology, will also monitor the vaccine's ability to create an immune response against HIV.

A Case Western Reserve University School of Medicine researcher has compiled evidence from more than 100 publications to show how obesity increases risk of 13 different cancers in young adults. The meta-analysis describes how obesity has shifted certain cancers to younger age groups, and intensified cellular mechanisms promoting the diseases.

Two University of Houston researchers, working to find cancer cures, received grants from the Cancer Prevention & Research Institute of Texas (CPRIT), the organization that funds groundbreaking cancer research and prevention programs in the state.

CPRIT awarded $1,173,420 to Navin Varadarajan, associate professor of chemical and biomolecular engineering, to improve effectiveness of T-cell immunotherapy and $811,617 to Sanghyuk Chung, associate professor of biology and biochemistry, to define molecular targets for the treatment of cervical cancer.

A newly designed three-part molecule could be the one answer patients with a certain form of breast cancer are looking for, scientists report.

This chimera, created by a team at the Georgia Cancer Center, has the ability to simultaneously decrease the expression of three growth factors that are over-expressed in some cancers.

Two University of Houston researchers, working to find cancer cures, received grants from the Cancer Prevention & Research Institute of Texas (CPRIT), the organization that funds groundbreaking cancer research and prevention programs in the state.

CPRIT awarded $1,173,420 to Navin Varadarajan, associate professor of chemical and biomolecular engineering, to improve effectiveness of T-cell immunotherapy and $811,617 to Sanghyuk Chung, associate professor of biology and biochemistry, to define molecular targets for the treatment of cervical cancer.

A University of Illinois and Mayo collaboration has demonstrated a novel gene expression analysis technique that can accurately measure levels of RNA quickly and directly from a cancerous tissue sample while preserving the spatial information across the tissue --something that conventional methods cannot do. The team's gene expression technique is described in a paper published in the online edition of Nature Communications.

Pages

Subscribe to Biochemistry