You are here

Gene Expression

Curcumin is widely used to impart color and flavor to food, but scientists have discovered that this yellow powder derived from the roots of the turmeric plant (Curcuma longa) can also help prevent or combat stomach cancer.

The study by researchers at the Federal University of São Paulo (UNIFESP) and the Federal University of Pará (UFPA) in Brazil identified possible therapeutic effects of this pigment and of other bioactive compounds found in food on stomach cancer, the third and fifth most frequent type of cancer among Brazilian men and women, respectively.

To explain a person's actions in the present, it sometimes helps to understand their past, including where they come from and how they were raised. This is also true of tumors. Delving into a tumor's cellular lineage, a Ludwig Cancer Research study shows, can reveal weaknesses to target for customized therapies.

The findings, detailed in the April 24 issue of the journal Nature, also illustrate how knowledge of the biochemistry and microenvironment of the tissue from which a tumor arises can help predict the genetic alterations its cancer cells are likely to undergo.

In a new study, researchers at Uppsala University now demonstrate that one night of sleep loss has a tissue-specific impact on the regulation of gene expression and metabolism in humans. This may explain how shift work and chronic sleep loss impairs our metabolism and adversely affects our body composition. The study is published in the scientific journal Science Advances.

In a new study, researchers at Uppsala University now demonstrate that one night of sleep loss has a tissue-specific impact on the regulation of gene expression and metabolism in humans. This may explain how shift work and chronic sleep loss impairs our metabolism and adversely affects our body composition. The study is published in the scientific journal Science Advances.

In a "proof of concept" study, scientists at Johns Hopkins Medicine say they have successfully delivered nano-size packets of genetic code called microRNAs to treat human brain tumors implanted in mice. The contents of the super-small containers were designed to target cancer stem cells, a kind of cellular "seed" that produces countless progeny and is a relentless barrier to ridding the brain of malignant cells.

Results of their experiments were published online June 21 in Nano Letters.

A new study of prostate cancer in 202 men, whose cancers had spread and were resistant to standard treatment, found that a surprisingly large number of these cancers – about 17 percent – belong to a deadlier subtype of metastatic prostate cancer.

Previously, it was thought that these cancers constituted less than 1 percent of all prostate cancers.

In a new study published online June 25, 2018 in Nature Medicine, UC San Francisco researchers have identified a key biological pathway in human cancer patients that appears to prime the immune system for a successful response to immunotherapy drugs known as checkpoint inhibitors.

For years, bioengineer Yaling Liu has been in pursuit of the deadly tumor cell. Liu has been perfecting a microfluidic device the size of two quarters that has the ability to catch and release circulating tumor cells (CTCs)--cancer cells that circulate in a cancer patient's blood. Such a device could lead to earlier detection of primary tumors and metastasis, as well as determine the effectiveness of treatment--all through a simple, non-invasive blood test.

In an article published April 10th in the journal Cell Reports, researchers at the University of São Paulo (USP) describe a biomarker panel that could tell physicians which patients diagnosed with glioma, a type of brain cancer, will tend to progress to a more aggressive form of the disease in the event of relapse.

According to principal investigator Houtan Noushmehr, a professor at USP's Ribeirão Preto Medical School (FMRP-USP), between 80% and 90% of patients diagnosed with brain cancer develop a second tumor after surgical removal of the original lesion.

Researchers have used open source data to develop a personalized risk assessment tool that can predict survival rate and treatment outcomes among patients with early-stage lung cancer.

The tool uses a panel of 29 extracellular matrix (ECM) genes that the researchers found were abnormally expressed in lung tumor tissue.

The traditional way of targeting cancer has been a “one size fits all” approach, but although two people may have the same type of cancer, the disease can still manifest and progress in a way that is unique to each individual.

Pages

Subscribe to Gene Expression