You are here

Ligand

Immune checkpoint inhibitors, such as the anti-PD-1 antibody pembrolizumab, have become important tools for managing non-small-cell lung cancer (NSCLC). Assessing the level of programmed death ligand 1 (PD-L1) expressed by a tumor can help clinicians determine how the patient should be treated. A report in The Journal of Molecular Diagnostics describes a novel and rapid approach for quantifying PD-L1 expression levels in tumors that requires only small amounts of tissue that can be collected using minimally-invasive bronchoscopy techniques.

A joint research team from Russia and the U.K. has demonstrated the possibility of developing a new type of anti-neoplastic drugs based on nanoMIPs, or "plastic antibodies." NanoMIPs are synthetic polymers that can function as antibodies, selectively binding to target proteins on the surface of cancer cells. This approach could lead to a paradigm shift in the development of new methods for cancer treatment.

Invariant natural killer T (iNKT) cells are powerful weapons our body's immune systems count on to fight infection and combat diseases like cancer, multiple sclerosis, and lupus. Finding ways to spark these potent cells into action could lead to more effective cancer treatments and vaccines.

While several chemical compounds have shown promise stimulating iNKT cells in mice, their ability to activate human iNKT cells has been limited.

At the heart of any cancer diagnosis or treatment are cells. If one thinks of the cell components controlling gene activation as a Russian nesting-doll of gene regulatory layers, within those increasingly smaller tiers are short pieces of non-coding DNA called enhancers. A study at The University of Texas MD Anderson Cancer Center reveals enhancers as a significant area of research for diagnosing and/or treating many cancers.

Subscribe to Ligand