You are here

Mutation

Human papillomavirus (HPV) is widely known to cause nearly all cases of cervical cancer. However, you might not know that HPV also causes 70 percent of oropharyngeal cancer, a subset of head and neck cancers that affect the mouth, tongue, and tonsils. Although vaccines that protect against HPV infection are now available, they are not yet widespread, especially in men, nor do they address the large number of currently infected cancer patients.

At the heart of any cancer diagnosis or treatment are cells. If one thinks of the cell components controlling gene activation as a Russian nesting-doll of gene regulatory layers, within those increasingly smaller tiers are short pieces of non-coding DNA called enhancers. A study at The University of Texas MD Anderson Cancer Center reveals enhancers as a significant area of research for diagnosing and/or treating many cancers.

An international team of researchers led by Lucio Miele, MD, PhD, Professor and Chair of Genetics at LSU Health New Orleans School of Medicine, and Justin Stebbing, BM BCh MA, PhD, Professor of Cancer Medicine and Medical Oncology at Imperial College of Medicine in London, has found new genetic mutations that promote the survival of cancer cells. The research also provided a clearer understanding of how some cancer cells are able to resist treatment. The findings are published in PLOS ONE, available here.

An international team led by Dr. Patricia Dahia, M.D., Ph.D., of UT Health San Antonio, discovered a genetic mutation that explains why adults with severe congenital heart defects--who live with low oxygen in their blood--are at dramatically high risk for adrenal gland cancer.

The finding is being made public March 29 in the New England Journal of Medicine.

A first-of-its-kind drug targeting a fused gene found in many types of cancer was effective in 93 percent of pediatric patients tested, researchers at UT Southwestern's Simmons Cancer Center announced.

Most cancer drugs are targeted to specific organs or locations in the body. Larotrectinib is the first cancer drug to receive FDA breakthrough therapy designation for patients with a specific fusion of two genes in the cancer cell, no matter what cancer type. The research appears in The Lancet Oncology.

A first-of-its-kind drug targeting a fused gene found in many types of cancer was effective in 93 percent of pediatric patients tested, researchers at UT Southwestern's Simmons Cancer Center announced.

Most cancer drugs are targeted to specific organs or locations in the body. Larotrectinib is the first cancer drug to receive FDA breakthrough therapy designation for patients with a specific fusion of two genes in the cancer cell, no matter what cancer type. The research appears in The Lancet Oncology.

An international research consortium led by Dr Jordi Surrallés, director of the Genetics Service at the Hospital de Sant Pau and professor of Genetics at the UAB, and by Dr Miquel Àngel Pujana, director of the ProCURE Research Program of the Catalan Institute of Oncology (ICO, IDIBELL), has identified a novel gene involved in this type of cancer, known as EDC4.

Neurology researchers investigating a rare but devastating neurological regression in infants have discovered the cause: gene mutations that severely disrupt crucial functions in mitochondria, the energy-producing structures within cells. The specific disease mechanism, in which mutations disrupt a critical mitochondrial enzyme, has not previously been implicated in a human disease.

An international team of researchers led by Lucio Miele, MD, PhD, Professor and Chair of Genetics at LSU Health New Orleans School of Medicine, and Justin Stebbing, BM BCh MA, PhD, Professor of Cancer Medicine and Medical Oncology at Imperial College of Medicine in London, has found new genetic mutations that promote the survival of cancer cells. The research also provided a clearer understanding of how some cancer cells are able to resist treatment. The findings are published in PLOS ONE, available here.

Lung cancer patients are particularly susceptible to malignant pleural effusion, when fluid collects in the space between the lungs and the chest wall. Researchers at the Helmholtz Zentrum München, in partnership with the German Center for Lung Research (DZL), have discovered a novel mechanism that causes this to happen. Their study, published in Nature Communications, now refines the mechanistic picture.

Pages

Subscribe to Mutation