You are here

in vitro

A joint research team from Russia and the U.K. has demonstrated the possibility of developing a new type of anti-neoplastic drugs based on nanoMIPs, or "plastic antibodies." NanoMIPs are synthetic polymers that can function as antibodies, selectively binding to target proteins on the surface of cancer cells. This approach could lead to a paradigm shift in the development of new methods for cancer treatment.

For the first time, a team of researchers have identified a new DNA structure inside cells that has an entirely different shape to the iconic “double helix” shape uncovered by Watson and Crick in 1953.

The structure, which has been named the i-motif, is a twisted “knot” of DNA. It has previously been observed and studied in vitro, but this is the first time scientists have identified it inside living cells. Previously, researchers in the field debated whether the structure existed at all inside living cells.

Engineers at the University of California San Diego have developed a miniature, ultra-low power injectable biosensor that could be used for continuous, long-term alcohol monitoring. The chip is small enough to be implanted in the body just beneath the surface of the skin and is powered wirelessly by a wearable device, such as a smartwatch or patch.

Each day, normal human cell tissues express a protein known as p53 that wages war against potential malignancies. However, between 30 and 40 percent of human breast cancers express a defective (mutant) form of p53 that helps cancer cells proliferate and grow.

Each day, normal human cell tissues express a protein known as p53 that wages war against potential malignancies. However, between 30 and 40 percent of human breast cancers express a defective (mutant) form of p53 that helps cancer cells proliferate and grow.

A study conducted at The Wistar Institute in collaboration with The University of Texas Southwestern Medical Center has demonstrated the efficacy of targeting aberrantly active telomerase to treat therapy-resistant melanoma. The research was published in the journal Clinical Cancer Research.

Thyroid cancer is a disease with good cure rates in most cases. In 5% of patients, however, the tumor becomes refractory to the available therapies and may spread all over the body, causing death.

In a study conducted at the University of São Paulo's Biomedical Science Institute (ICB-USP) in Brazil, researchers discovered that increasing tumor aggressiveness is accompanied by decreasing expression of 52 microRNAs - small RNA molecules that do not code for proteins but perform a regulatory function in several cellular processes.

Cancer molecular testing can drive clinical decision making and help a clinician determine if a patient is a good candidate for a targeted therapeutic drug. Clinical tests for common cancer causing-mutations in the genes BRAF, EGFR and KRAS abound, and include U.S. Food and Drug Administration (FDA)-approved companion diagnostics (FDA-CDs) as well as laboratory-developed tests (LDTs).

Cancer molecular testing can drive clinical decision making and help a clinician determine if a patient is a good candidate for a targeted therapeutic drug. Clinical tests for common cancer causing-mutations in the genes BRAF, EGFR and KRAS abound, and include U.S. Food and Drug Administration (FDA)-approved companion diagnostics (FDA-CDs) as well as laboratory-developed tests (LDTs).

Chlamydia trachomatis is a bacterium that is one of the most common sexually transmitted infections in Europe. Rates in sexually active young people are commonly between 5% and 10%. The number of diagnosed cases is increasing in many European  countries, in part due to increased testing and the use of more sensitive tests. People with genital chlamydia may experience symptoms of genital tract inflammation including urethritis and cervicitis, but the majority remains asymptomatic.

Pages

Subscribe to in vitro